

File: 5600-20-06-01

January 14, 2025

Christine Sweezey Environmental Health Officer Interior Health 540 Borland Street, 3rd Floor Williams Lake, BC V2G 2G8

Dear Christine Sweezey:

Re: Transmittal of the 2024 Annual Report for the Russet Bluff Water System

We are pleased to submit the 2024 Annual Report for the Russet Bluff Water System. This report is prepared to provide a comprehensive summary of the key developments, activities, and achievements of 2024, as well as to outline plans for the water system.

The report has been developed with consideration for public engagement and transparency, ensuring it meets the information needs of Interior Health, the Cariboo Regional District Board of Directors, and particularly the Russet Bluff community, as represented by Electoral Area E Director Melynda Neufeld.

We trust this report will serve as a valuable resource in understanding the progress and direction of the Russet Bluff Water System.

Sincerely,

Kelly McDonald Manager of Utilities

KM/cm

building communities together

Contents

1.	Exe	cutive Summary1
	1.1.	Key Information1
2.	Intr	oduction1
3.	Mai	ntenance1
4.	Pro	jects and Planned Activities2
5.	Env	rironmental Operator's Certification Program (EOCP)2
6.	Sou	rce to Tap Risks and Cross-Connection Control3
7.	Wat	ter Sampling3
8.	Wat	ter Quality3
9.	Eve	nts3
Ç	9.1.	Asset Management3
Ç	9.2.	Water Demand3
10.	. E	Emergency Planning4
	10.1.	Key Elements of the ERCP4
11.		Conclusion4
12.	F	References5
Ар	pend	ix A: Links6
Ар	pend	ix B: Sample Results8
Ар	pend	ix C: Emergency Plans22
Ta	bles	and Figures
Tab	ole 1:	Environmental Operator Certification Levels

1. Executive Summary

The Russet Bluff Water System, operated by the Cariboo Regional District (CRD) since 2008, serves approximately 250 residents with 3.8 km of distribution piping originally constructed with asbestos cement. To manage water quality concerns, particularly the extreme hardness observed in the Lower Well, operations now rely solely on the Upper Well, successfully eliminating previous water quality advisories. CRD Operators adhere to a strict maintenance and sampling schedule—comprising weekly inspections, regular bacteriological testing, and comprehensive chemical analyses—to ensure consistent water quality and system reliability. Looking ahead, a 2025 system Master Plan is set to enhance asset management and long-term budgeting, while planned upgrades, including a flowmeter installation, aim to improve water demand monitoring. In addition, continued progress in the Environmental Operator's Certification Program and the development of an Emergency Response and Contingency Plan underscore CRD's commitment to safeguarding public health and ensuring prompt responses to potential emergencies.

1.1. Key Information:

System key facts:

- 3.8 km of PVC pipe
- Single reservoir
- 2 wells
- 2 pumpstations
- 100 service connections serving approximately 250 residents
- Untreated

2. Introduction

The Russet Bluff Water System has been operated by the CRD since 2008 (Russet Bluff Water System Service Establishment Bylaw No. 4407, 2008). The system was previously constructed and operated by Fetters Development Ltd. The Russet Bluff Water System serves approximately 250 residents by way of 3.8 km of distribution piping. The system was originally installed using asbestos cement pipe (AC), which makes up 3 km of the existing mainline, and has a lower estimated lifespan than other pipe materials such as polyvinyl chloride (PVC) and steel.

3. Maintenance

CRD Operators follow a structured maintenance and monitoring schedule approved by

Interior Health Authority to ensure water quality. Key activities include:

- Collecting 48 bacteriological water samples annually and sending them to an accredited laboratory to confirm potability and detect potential issues.
- Conducting full-spectrum water quality analysis as required.
- Performing weekly inspections and maintenance of system equipment to monitor performance and ensure operational reliability.

4. Projects and Planned Activities

The commissioning of a system Master Plan for Russet Bluff is budgeted for 2025 to assist in asset management and long-term cost analysis. This plan will consider such factors as expected lifespan and criticality of assets to best prioritize spending.

5. Environmental Operator's Certification Program (EOCP)

The CRD has been active in 2024, with staff completing numerous training courses and achieving certification levels in the Environmental Operator's Certification Program (EOCP). The Central region systems have two certified Operators (table 1).

The Operators are responsible for operating the Russet Bluff Water System along with Russet Bluff and Russet Bluff water systems. These Operators are also responsible for the sewer systems in Russet Bluff, Pine Valley and Wildwood.

<u>Operator</u>	<u>Region</u>	<u>Water</u> <u>Distribution</u>	Water Treatment	<u>Small Water</u> <u>Systems</u>
Ken Heidema	<mark>Central</mark>	2	1	V
Charles Howes	<mark>Central</mark>	1	1	
Jourdy Ouellette (backup)	South	3	2	
Philip Wilkins (backup)	North	1	1	V
Manager (backup)	Central	4	1	

Operators have worked diligently to maintain the level of service our residents expect while safeguarding public health. We anticipate improvements in 2025 through additional staff and continued training.

6. Source to Tap Risks and Cross-Connection Control

The Russet Bluff Water System relies on two source wells located in a developed area at the center of the community, which poses a higher risk of contamination due to nearby human activities. To mitigate these risks, establishing a Source Protection Area will be assessed.

7. Water Sampling

The 2024 sampling schedule consisted of a full chemical analysis as well as twice monthly bacteriological sampling at two locations.

* Sample results attached.

8. Water Quality

The source groundwater is extremely hard, particularly in the Lower Well. The Russet Bluff Upper Well has a hardness of over 600*, the Lower Well 1170* hardness (*over 200* is considered very hard water*). We have since tested and found we are keeping up with summer demand utilizing only the Upper Well. By not using the Lower Well, we were able to rescind the water quality advisories that were previously on the system.

* mg/L as CACO₃

9. Events

9.1. Asset Management

Throughout 2024, asset management inventory and implementation efforts have been ongoing across all Cariboo Regional District utilities, including the Russet Bluff Water System. This initiative is designed to support more efficient budgeting for system improvements and strengthen preventive maintenance practices. A system Master Plan is scheduled for development in 2025 to assist with long-term budgeting and improve eligibility for grant funding opportunities.

9.2. Water Demand

Currently, water demand is measured by pump hours as the system has no flowmeter. This method is very unreliable and plans for a flowmeter installation are necessary.

10. Emergency Planning

A new Emergency Response and Contingency Plan (ERCP) for the Russet Bluff Water System is currently being developed to enhance preparedness and ensure quick, coordinated responses to potential emergencies affecting the water supply.

The process began with a risk assessment to identify potential hazards, such as equipment failures, natural disasters, contamination events, and power outages. Stakeholder input, including feedback from Operators, community members, and regulatory bodies, helped shape the plan to address specific vulnerabilities and local conditions.

10.1. Key Elements of the ERCP

The key elements of the ERCP include:

- Clear Response Protocols: Step-by-step actions for various emergency scenarios.
- Roles and Responsibilities: Defined roles for Operators, management, and external agencies.
- Communication Strategies: Procedures for notifying residents, government agencies, and media.
- Resource Allocation: Identification of equipment, backup systems, and personnel required during emergencies.
- Training and Drills: Regular exercises to ensure staff are familiar with the plan and can respond efficiently.

The plan will be reviewed and approved by local health authorities to ensure compliance with provincial regulations. Updating the ERCP ensures that emergency procedures align with the current operational capacity.

In addition, a drought management plan is also currently being developed in line with best practice.

11. Conclusion

In conclusion, the Russet Bluff Water System continues to effectively serve its community by addressing aging infrastructure and water quality challenges through rigorous maintenance, targeted operational adjustments, and proactive planning. By relying solely on the Upper Well, the system has successfully eliminated previous water quality advisories, ensuring safe drinking water for approximately 250 residents. Future initiatives, including the development of a comprehensive Master Plan, flowmeter installation for improved water demand monitoring, and enhanced emergency response planning, reinforce the Cariboo Regional

^{*} Plans attached.

District's commitment to sustainable operations and public health protection.

12. References

- Health Canada (2019, May 21). Guidance on Natural Organic Matter in Drinking Water.
 Retrieved from https://www.canada.ca/en/health-canada/programs/consultation-organic-matter-drinking-water/document.html#es
- Environmental Operators Certification Program (2024). Retrieved from https://eocp.ca/
- Sample results, Interior Health. Retrieved from https://services.interiorhealth.ca/publichealthprotection/watersamples.aspx
- Statistics Canada (2021). *Survey of Drinking Water Plants The Daily*. https://www150.statcan.gc.ca/n1/daily-quotidien/231114/dq231114d-eng.htm

Thank you to:

- Cheryl McMullen
- Jourdy Ouellette
- Colin Brusic
- Ken Heidema

for their contribution.

- Chuck Howes
- Phil Wilkins
- Tyler Olsen

Appendix A: Links

Interior Health:

- Interior Health Water Advisories
- <u>Drinking Water | Environmental & Seasonal Health | IH</u>

Cariboo Regional District:

- Water Notices and Advisories Cariboo Regional District
- Sewer and Water Services Cariboo Regional District

Notification App (VoyentAlert!):

• <u>Emergency Notification System - Cariboo Regional District</u>

Environmental Operators Certification Program (EOCP):

- <u>EOCP Homepage | EOCP</u>
- <u>Backflow Prevention, Cross Connection Control, and the Environmental Operators</u> <u>Certification Program | EOCP</u>

Appendix B: Sample Results

Facility and Sample Site: Russet Bluff Water System 2214 Grebe Drive, Williams Lake, BC	Test Type: Drinking Water – Bacteriological Unit of Measure: CFU per 100 ml	Value	Date Collected	Results
Pumphouse	Sample Parameter: E. coli	<1	03 Jan 2024	Acceptable
	Sample Parameter: Total Coliform	<1	03 Jan 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	03 Jan 2024	Acceptable
	Sample Parameter: Total Coliform	<1	03 Jan 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	09 Jan 2024	Acceptable
	Sample Parameter: Total Coliform	<1	09 Jan 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	09 Jan 2024	Acceptable
	Sample Parameter: Total Coliform	<1	09 Jan 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	05 Feb 2024	Acceptable
Comple Station	Sample Parameter: Total Coliform Sample Parameter: E. coli	<1 <1	05 Feb 2024	Acceptable
Sample Station	Sample Parameter: E. Coll Sample Parameter: Total Coliform	<1	05 Feb 2024 05 Feb 2024	Acceptable Acceptable
Pumphouse	Sample Parameter: E. coli	<1	12 Feb 2024	Acceptable
rumphouse	Sample Parameter: Total Coliform	<1	12 Feb 2024 12 Feb 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	12 Feb 2024 12 Feb 2024	Acceptable
Sample Station	Sample Parameter: Total Coliform	<1	12 Feb 2024 12 Feb 2024	Acceptable
Pumphouse	Sample Parameter: Total Collionni	<1	04 Mar 2024	Acceptable
Tumphouse	Sample Parameter: Total Coliform	<1	04 Mar 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	04 Mar 2024	Acceptable
Sample Station	Sample Parameter: Total Coliform	<1	04 Mar 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	11 Mar 2024	Acceptable
Tumphouse	Sample Parameter: Total Coliform	<1	11 Mar 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	11 Mar 2024	Acceptable
oumple station	Sample Parameter: Total Coliform	<1	11 Mar 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	03 Apr 2024	Acceptable
oumple station	Sample Parameter: Total Coliform	<1	03 Apr 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	09 Apr 2024	Acceptable
	Sample Parameter: Total Coliform	<1	09 Apr 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	09 Apr 2024	Acceptable
·	Sample Parameter: Total Coliform	<1	09 Apr 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	15 Apr 2024	Acceptable
	Sample Parameter: Total Coliform	<1	15 Apr 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	08 May 2024	Acceptable
	Sample Parameter: Total Coliform	<1	08 May 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	08 May 2024	Acceptable
	Sample Parameter: Total Coliform	<1	08 May 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	14 May 2024	Acceptable
	Sample Parameter: Total Coliform	<1	14 May 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	14 May 2024	Acceptable
	Sample Parameter: Total Coliform	<1	14 May 2024	Acceptable
Upper Pumphouse	Sample Parameter: E. coli	<1	15 May 2024	Acceptable
	Sample Parameter: Total Coliform	<1	15 May 2024	Acceptable
Lower Pumphouse	Sample Parameter: E. coli	<1	15 May 2024	Acceptable
	Sample Parameter: Total Coliform	<1	15 May 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	15 May 2024	Acceptable
	Sample Parameter: Total Coliform	<1	15 May 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	03 Jun 2024	Acceptable
Consolo Chelian	Sample Parameter: Total Coliform Sample Parameter: E. coli	<1	03 Jun 2024	Acceptable
Sample Station		<1	03 Jun 2024	Acceptable
Lower Well	Sample Parameter: Total Coliform	<1 <1	03 Jun 2024	Acceptable
Lower Well	Sample Parameter: E. coli Sample Parameter: Total Coliform	<1	03 Jun 2024 03 Jun 2024	Acceptable Acceptable
Lower Well	Sample Parameter: E. coli	<1		
Lower Well	Sample Parameter: E. Coll Sample Parameter: Total Coliform	<1	10 Jun 2024 10 Jun 2024	Acceptable Acceptable
Pumphouse	Sample Parameter: E. coli	<1	10 Jun 2024	Acceptable
i umphouse	Sample Parameter: E. Coli	<1	10 Jun 2024 10 Jun 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	10 Jun 2024	Acceptable
Sample Station	Sample Parameter: Total Coliform	<1	10 Jun 2024	Acceptable
Lower Well	Sample Parameter: Total Collionii	<1	08 Jul 2024	Acceptable
LOWE, WEII	Sample Parameter: Total Coliform	<1	08 Jul 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	08 Jul 2024	Acceptable
cap.c station	Sample Parameter: Total Coliform	<1	08 Jul 2024	Acceptable
D	Sample Parameter: E. coli	<1	15 Jul 2024	Acceptable
Pumphouse				

Facility and Sample Site:	Test Type:			
Russet Bluff Water System	Drinking Water – Bacteriological			
2214 Grebe Drive, Williams Lake, BC	Unit of Measure: CFU per 100 ml	Value	Date Collected	Results
Lower Well	Sample Parameter: E. coli	<1	15 Jul 2024	Acceptable
	Sample Parameter: Total Coliform	<1	15 Jul 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	15 Jul 2024	Acceptable
	Sample Parameter: Total Coliform	<1	15 Jul 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	12 Aug 2024	Acceptable
	Sample Parameter: Total Coliform	<1	12 Aug 2024	Acceptable
Lower Well	Sample Parameter: E. coli	<1	12 Aug 2024	Acceptable
	Sample Parameter: Total Coliform	<1	12 Aug 2024	Acceptable
Upper Well	Sample Parameter: E. coli	<1	12 Aug 2024	Acceptable
• •	Sample Parameter: Total Coliform	<1	12 Aug 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	21 Aug 2024	Acceptable
•	Sample Parameter: Total Coliform	<1	21 Aug 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	21 Aug 2024	Acceptable
,	Sample Parameter: Total Coliform	<1	21 Aug 2024	Acceptable
Lower Well	Sample Parameter: E. coli	<1	21 Aug 2024	Acceptable
	Sample Parameter: Total Coliform	<1	21 Aug 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	10 Sep 2024	Acceptable
. amphouse	Sample Parameter: Total Coliform	<1	10 Sep 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	10 Sep 2024	Acceptable
Sumple Station	Sample Parameter: Total Coliform	<1	10 Sep 2024	Acceptable
Lower Well	Sample Parameter: E. coli	<1	10 Sep 2024	Acceptable
LOWE! WE!!	Sample Parameter: Total Coliform	<1	10 Sep 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	17 Sep 2024	Acceptable
Tumphouse	Sample Parameter: Total Coliform	<1	17 Sep 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	17 Sep 2024	Acceptable
Jample Station	Sample Parameter: Total Coliform	<1	17 Sep 2024 17 Sep 2024	Acceptable
Lower Well	Sample Parameter: E. coli	<1	17 Sep 2024	Acceptable
Lower Well	Sample Parameter: Total Coliform	<1	17 Sep 2024 17 Sep 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	02 Oct 2024	Acceptable
Pumphouse	Sample Parameter: Total Coliform	<1	02 Oct 2024 02 Oct 2024	Acceptable
Cample Station	·	<1		
Sample Station	Sample Parameter: E. coli Sample Parameter: Total Coliform	<1	02 Oct 2024 02 Oct 2024	Acceptable Acceptable
Dumanhausa	·	<1	15 Oct 2024	·
Pumphouse	Sample Parameter: E. coli	<1	15 Oct 2024 15 Oct 2024	Acceptable
Canada Charian	Sample Parameter: Total Coliform			Acceptable
Sample Station	Sample Parameter: E. coli	<1	15 Oct 2024	Acceptable
D	Sample Parameter: Total Coliform	<1	15 Oct 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	04 Nov 2024	Acceptable
	Sample Parameter: Total Coliform	<1	04 Nov 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	04 Nov 2024	Acceptable
	Sample Parameter: Total Coliform	<1	04 Nov 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	12 Nov 2024	Acceptable
	Sample Parameter: Total Coliform	<1	12 Nov 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	12 Nov 2024	Acceptable
	Sample Parameter: Total Coliform	<1	12 Nov 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	02 Dec 2024	Acceptable
	Sample Parameter: Total Coliform	<1	02 Dec 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	02 Dec 2024	Acceptable
	Sample Parameter: Total Coliform	<1	02 Dec 2024	Acceptable
Pumphouse	Sample Parameter: E. coli	<1	09 Dec 2024	Acceptable
	Sample Parameter: Total Coliform	<1	09 Dec 2024	Acceptable
Sample Station	Sample Parameter: E. coli	<1	09 Dec 2024	Acceptable
	Sample Parameter: Total Coliform	<1	09 Dec 2024	Acceptable

Page : 4 of 7 Work Order : KS2400865

Client : Cariboo Regional District

Project : Drinking Water

Analytical Results Evaluation

Matrix: Water	Client	sample ID	Alexis Creek	Lexington	Russet Bluff					
		Sampling	g date/time	12-Mar-2024 02:30	12-Mar-2024 02:30	12-Mar-2024 02:30				
			Sub-Matrix	Water	Water	Water		(
Analyte	CAS Number	Method/Lab	Unit	KS2400865-001	KS2400865-002	KS2400865-003				
Physical Tests										
Alkalinity, total (as CaCO3)		E290/VA	mg/L	277	366	604				
Colour, true		E329/VA	CU	<5.0	<5.0	<5.0				
Conductivity		E100/VA	μS/cm	581	1410	1200				
pH		E108/VA	pH units	8.39	8.37	8.45				
Solids, total dissolved [TDS]		E162/VA	mg/L	347	906	604				
Turbidity		E121/VA	NTU	<0.10	0.65	<0.10				
Hardness (as CaCO3), from total Ca/Mg		EC100A/VA	mg/L	191	528	708	2222			
Anions and Nutrients										
Chloride	16887-00-6	E235.CI/VA	mg/L	5.74	57.3	39.7				
Fluoride	16984-48-8	E235.F/VA	mg/L	0.157	0.112	<0.100 DLDS				
Nitrate (as N)	14797-55-8	E235.NO3-L/VA	mg/L	0.382	<0.0250 DLDS	0.990				
Nitrite (as N)	14797-65-0	E235.NO2-L/VA	mg/L	<0.0010	<0.0050 DLD8	<0.0050 DLDS				
Sulfate (as SO4)	14808-79-8	E235.SO4/VA	mg/L	31.9	339	63.0				
Total Metals										
Aluminum, total	7429-90-5	E420/VA	mg/L		<0.0030					
Aluminum, total	7429-90-5	E420/VA	mg/L	<0.0100		<0.0100				
Antimony, total	7440-36-0	E420/VA	mg/L		<0.00010					
Antimony, total	7440-36-0	E420/VA	mg/L	<0.00050		<0.00050				
Arsenic, total	7440-38-2	E420/VA	mg/L	0.00310	0.00887	0.00253				
Barium, total	7440-39-3	E420/VA	mg/L		0.00891					
Barium, total	7440-39-3	E420/VA	mg/L	<0.0200		0.0225				
Boron, total	7440-42-8	E420/VA	mg/L		0.123					
Boron, total	7440-42-8	E420/VA	mg/L	<0.100		0.212				
Cadmium, total	7440-43-9	E420/VA	mg/L		<0.0000150 DLM					
Cadmium, total	7440-43-9	E420/VA	mg/L	<0.000200		<0.000200				
Calcium, total	7440-70-2	E420/VA	mg/L		50.0					
Calcium, total	7440-70-2	E420/VA	mg/L	20.6		10.0				

Page : 5 of 7 Work Order : KS2400865

Client : Cariboo Regional District

Project : Drinking Water

Analytical Results Evaluation

Matrix: Water		Client s	ample ID	Alexis Creek	Lexington	Russet Bluff	 	****	
	Sampling date/time			12-Mar-2024 02:30	12-Mar-2024 02:30	12-Mar-2024 02:30	 1 2002		
		S	ub-Matrix	Water	Water	Water	 		
Analyte	CAS Number	Method/Lab	Unit	KS2400865-001	KS2400865-002	KS2400865-003	 *******		
Total Metals									
Chromium, total	7440-47-3	E420/VA	mg/L		<0.00050		 		
Chromium, total	7440-47-3	E420/VA	mg/L	0.00829		0.0116	 		
Copper, total	7440-50-8	E420/VA	mg/L		0.00051		 		
Copper, total	7440-50-8	E420/VA	mg/L	0.00148		0.00433	 		
Iron, total	7439-89-6	E420/VA	mg/L		0.167		 		
Iron, total	7439-89-6	E420/VA	mg/L	<0.030	(*****	<0.030	 		
Lead, total	7439-92-1	E420/VA	mg/L		<0.000050	****	 		
Lead, total	7439-92-1	E420/VA	mg/L	<0.000500		<0.000500	 		
Magnesium, total	7439-95-4	E420/VA	mg/L		98.0		 		
Magnesium, total	7439-95-4	E420/VA	mg/L	33.9		166	 		
Manganese, total	7439-96-5	E420/VA	mg/L		0.102		 		
Manganese, total	7439-96-5	E420/VA	mg/L	<0.00200		<0.00200	 		
Mercury, total	7439-97-6	E508/VA	mg/L	<0.0000050	<0.0000050	<0.0000050	 		
Potassium, total	7440-09-7	E420/VA	mg/L		6.06		 		
Potassium, total	7440-09-7	E420/VA	mg/L	6.03	·	7.38	 		
Selenium, total	7782-49-2	E420/VA	mg/L		<0.000050		 		
Selenium, total	7782-49-2	E420/VA	mg/L	0.00537	1 5555 3	0.00247	 		
Sodium, total	7440-23-5	E420/VA	mg/L		110		 		
Sodium, total	7440-23-5	E420/VA	mg/L	62.6		32.3	 		<u></u>
Uranium, total	7440-61-1	E420/VA	mg/L		0.000987		 1 1111 1		
Uranium, total	7440-61-1	E420/VA	mg/L	0.00574		<0.000100	 		
Zinc, total	7440-66-6	E420/VA	mg/L		<0.0030		 		
Zinc, total	7440-66-6	E420/VA	mg/L	<0.0500		<0.0500	 		

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Page : 6 of 7
Work Order : KS240086

Client : Cariboo Regional District

Project ; Drinking Water

Summary of Guideline Limits

Analyte	CAS Number	Unit	BCDWQG AO	BCDWQG MAC	BCDWQG OG
Physical Tests					
Alkalinity, total (as CaCO3)		mg/L			
Colour, true		CU	15 CU		
Conductivity		μS/cm			
Hardness (as CaCO3), from total Ca/Mg		mg/L			
рН		pH units		-	7 - 10.5 pH
Solids, total dissolved [TDS]		ma/I	F00/I		units
Turbidity		mg/L NTU	500 mg/L	 1 NTU	-
Anions and Nutrients		NIO		INIO	-
Chloride	16887-00-6	mg/L	250 mg/L		
Fluoride	16984-48-8	mg/L	230 Hig/L	1.5 mg/L	-
Nitrate (as N)	14797-55-8	mg/L	-	1.5 mg/L	
Nitrite (as N)	14797-65-0	mg/L		1 mg/L	
Sulfate (as SO4)	14808-79-8	mg/L	500 mg/L		_
Total Metals	14000-15-0	IIIg/L	300 mg/L		-
Aluminum, total	7429-90-5	mg/L		2.9 mg/L	-
Antimony, total	7440-36-0	mg/L	-	0.006 mg/L	-
Arsenic, total	7440-38-2	mg/L		0.01 mg/L	
Barium, total	7440-39-3	mg/L		2 mg/L	
Boron, total	7440-42-8	mg/L		5 mg/L	
Cadmium, total	7440-43-9	mg/L		0.007 mg/L	
Calcium, total	7440-70-2	mg/L			
Chromium, total	7440-47-3	mg/L		0.05 mg/L	
Copper, total	7440-50-8	mg/L	1 mg/L	2 mg/L	
Iron, total	7439-89-6	mg/L	0.3 mg/L		
Lead, total	7439-92-1	mg/L		0.005 mg/L	
Magnesium, total	7439-95-4	mg/L			
Manganese, total	7439-96-5	mg/L	0.02 mg/L	0.12 mg/L	
Mercury, total	7439-97-6	mg/L		0.001 mg/L	
Potassium, total	7440-09-7	mg/L			
Selenium, total	7782-49-2	mg/L		0.05 mg/L	
Sodium, total	7440-23-5	mg/L	200 mg/L		
Uranium, total	7440-61-1	mg/L		0.02 mg/L	
Zinc, total	7440-66-6	mg/L	5 mg/L		

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 7 of 7 Work Order : KS2400865

Client : Cariboo Regional District

Project : Drinking Water

Key:

BCDWQG British Columbia Drinking Water Quality Guidelines (JAN, 2023)

AO Aesthetic Objective/Other Value
MAC Maximium Acceptable Concentrations

OG Operational Guidance

Page : 3 of 3 Work Order : KS2401919

Client : Cariboo Regional District

Project : Drinking Water

Analytical Results Evaluation

Matrix: Water		Client sample ID Sampling date/time			Russet Bluff Lower Well		 	
					27-May-2024 11:20		 	
100		Water	Water		 	 Property Control		
Analyte	CAS Number	Method/Lab	Unit	KS2401919-001	KS2401919-002		 (8
Total Metals						Part of the second		
Arsenic, total	7440-38-2	E420/VA	mg/L	0.00942			 	
Manganese, total	7439-96-5	E420/VA	mg/L		0.304		 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Key:

Page : 3 of 3 Work Order : KS2402196

Client : Cariboo Regional District

Project : ---

Analytical Results Evaluation

Matrix: Water	Lexington (Punp House)	Russet Bluff (Lower Well)	 		 			
		Sampling	date/time	11-Jun-2024 09:18	11-Jun-2024 13:20	 ,		
	Sub-Matrix				Water	 		 12000
Analyte	CAS Number	Method/Lab	Unit	KS2402196-001	KS2402196-002	 		
Anions and Nutrients								
Nitrate (as N)	14797-55-8	E235.NO3-L/VA	mg/L	<0.0250 DLDS		 		
Total Metals								
Arsenic, total	7440-38-2	E420/VA	mg/L	0.00951		 		
Manganese, total	7439-96-5	E420/VA	mg/L	(******)	0.294	 	****	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Summary of Guideline Limits

Analyte	CAS Number	Unit	BCDWQG AO	BCDWQG MAC		
Anions and Nutrients						
Nitrate (as N)	14797-55-8	mg/L		10 mg/L		
otal Metals						
Arsenic, total	7440-38-2	mg/L		0.01 mg/L		
Manganese, total	7439-96-5	mg/L	0.02 mg/L	0.12 mg/L		

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

BCDWQG British Columbia Drinking Water Quality Guidelines (JAN, 2023)

AO Aesthetic Objective/Other Value
MAC Maximium Acceptable Concentrations

Page : 4 of 8 Work Order : KS240266

Client : Cariboo Regional District

Project : Drinking Water - Full Chemical Russet Bluff Lower Well

Analytical Results

			Client sample ID	Russet Bluff Lower Well						
Sub-Matrix: Water		S	Sampling date/time	09-Jul-2024						
(Matrix: Water)			32 10 30 00 00 00 00 00 00 00 00 00 00 00 00	09:50		_				
Analyte	Method/Lab	LOR	Unit	KS2402662-002	BCDWQG AO	BCDWQG MAC	BCDWQG OG			
Physical Tests										
Absorbance, UV (@ 254nm), unfiltered	E405/VA	0.0050	AU/cm	0.0970	-	-	-		-	-
Alkalinity, bicarbonate (as CaCO3)	E290/VA	1.0	mg/L	782	-	-	> - -		-	
Alkalinity, carbonate (as CaCO3)	E290/VA	1.0	mg/L	10.6	-	-	-	1000	-	-
Alkalinity, hydroxide (as CaCO3)	E290/VA	1.0	mg/L	<1.0	-	-				
Alkalinity, phenolphthalein (as CaCO3)	E290/VA	1.0	mg/L	5.3	-	-	-		-	
Alkalinity, total (as CaCO3)	E290/VA	1.0	mg/L	793	-				-	
Colour, true	E329/VA	5.0	CU	<5.0	15 CU	-		7==	-	144
Conductivity	E100/VA	2.0	μS/cm	2180	-	-	0==0	-		
Hardness (as CaCO3), from total Ca/Mg	EC100A/VA	0.60	mg/L	1170	-	-	-		-	
Langelier index (@ 15°C)	EC105A/VA	0.010	-	1.29		-			-	-
Langelier index (@ 20°C)	EC105A/VA	0.010	v	1.36						722
Langelier index (@ 25°C)	EC105A/VA	0.010	-	1.43	-	-			:	
Langelier index (@ 4°C)	EC105A/VA	0.010	-	1.12	-	-			-	
Langelier index (@ 60°C)	EC105A/VA	0.010	-	1.86	-	-				
Langelier index (@ 77°C)	EC105A/VA	0.010		2.05	-		-			
рН	E108/VA	0.10	pH units	8.28	-	-	7 - 10.5 pH units		-	
Solids, total dissolved [TDS]	E162/VA	10	mg/L	1620	500 mg/L	-	()		-	
Turbidity	E121/VA	0.10	NTU	0.18	-	1 NTU			-	
Transmittance, UV (@ 254nm), unfiltered	E405/VA	1.0	% T/cm	80.0	-	-	-		-	
Anions and Nutrients										
Ammonia, total (as N)	E298/VA	0.0050	mg/L	0.114	-					
Bromide	E235.Br-L/VA	0.050	mg/L	<0.500 DLD	IS	-		(==	-	
Chloride	E235.CI/VA	0.50	mg/L	247	250 mg/L	-		-	-	12.
Fluoride	E235.F/VA	0.020	mg/L	<0.200 DLD		1.5 mg/L				
Kjeldahl nitrogen, total [TKN]	E318/VA	0.050	mg/L	0.461	-	-				

Page 5 of 8 KS2402662 Work Order :

Cariboo Regional District Drinking Water - Full Chemical Russet Bluff Lower Well

Analyte	Method/Lab	LOR	Unit	KS2402662-002 (Continued)	BCDWQG AO	BCDWQG MAC	BCDWQG OG			-
Anions and Nutrients - Con	tinued									
Nitrate (as N)	E235.NO3-L/VA	0.0050	mg/L	0.834		10 mg/L				
Nitrite (as N)	E235.NO2-L/VA	0.0010	mg/L	0.0722	-	1 mg/L				
Nitrogen, total organic	EC363/VA	0.050	mg/L	0.347		-			220	
Sulfate (as SO4)	E235.SO4/VA	0.30	mg/L	138	500 mg/L	-		a=0		
Cyanides									•	
Cyanide, strong acid dissociable (Total)	E333/VA	0.0050	mg/L	<0.0050	-	-	-		-	==.
Organic / Inorganic Carbon			The production							
Carbon, total organic [TOC]	E355-L/VA	0.50	mg/L	5.12	-	-			_	
Microbiological Tests										
Coliforms, total	E010/KS	1	MPN/100mL	<1		1 MPN/100mL				
Coliforms, Escherichia coli [E. coli]	E010/KS	1	MPN/100mL	<1	·-	1 MPN/100mL	-	-	-	550
lon Balance										
Anion sum	EC101A/VA	0.10	meq/L	25.8		-				
Cation sum (total)	EC101A/VA	0.10	meq/L	26.1	1	-				ene:
on balance (APHA)	EC101A/VA	0.010	%	0.578	0	-				##X
Total Metals										
Aluminum, total	E420/VA	0.0030	mg/L	<0.0030	-	2.9 mg/L		**	-	
Antimony, total	E420/VA	0.00010	mg/L	0.00014	7447	0.006 mg/L	-		-40	1100
Arsenic, total	E420/VA	0.00010	mg/L	0.00438	3==7	0.01 mg/L				
Barium, total	E420/VA	0.00010	mg/L	0.0109		2 mg/L				
Beryllium, total	E420/VA	0.000100	mg/L	<0.000100	-	-		_	-	-
Bismuth, total	E420/VA	0.000050	mg/L	<0.000050	-					
Boron, total	E420/VA	0.010	mg/L	0.266	-	5 mg/L		-		
Cadmium, total	E420/VA	0.0000050	mg/L	<0.0000050	0.00	0.007 mg/L		-	-	
Calcium, total	E420/VA	0.050	mg/L	65.0		-		-	+	_
Cesium, total	E420/VA	0.000010	mg/L	<0.000010	1944	-				
Chromium, total	E420/VA	0.00050	mg/L	<0.00050	-	0.05 mg/L		-		
Cobalt, total	E420/VA	0.00010	mg/L	0.00026	7. 44 .5	0.001 mg/L		-	-	
Copper, total	E420/VA	0.00050	mg/L	0.00122	1 mg/L	2 mg/L			#1	
ron, total	E420/VA	0.010	mg/L	0.038	0.3 mg/L	-			_	
Lead, total	E420/VA	0.000050	mg/L	<0.000050	(***)	0.005 mg/L				
Lithium, total	E420/VA	0.0010	mg/L	0.0024	2,000		-	==		-
Magnesium, total	E420/VA	0.0050	mg/L	244	-	-	-	#1	-	
Manganese, total	E420/VA	0.00010	mg/L	0.284	0.02 mg/L	0.12 mg/L				

Page : 6 of 8 Work Order : KS2402662

Client : Cariboo Regional District

Project : Drinking Water - Full Chemical Russet Bluff Lower Well

Analyte	Method/Lab	LOR	Unit	KS2402662-002 (Continued)	BCDWQG AO	BCDWQG MAC	BCDWQG OG			
Total Metals - Continue	d									*
Mercury, total	E508/VA	0.0000050	mg/L	<0.0000050		0.001 mg/L	-	-		-
Molybdenum, total	E420/VA	0.000050	mg/L	0.00938	-	-	-	-		
Nickel, total	E420/VA	0.00050	mg/L	0.00547		-	-	-		
Phosphorus, total	E420/VA	0.050	mg/L	0.195	0.01 mg/L	-	-			
Potassium, total	E420/VA	0.050	mg/L	8.35			-			
Rubidium, total	E420/VA	0.00020	mg/L	0.00280			-	-		-
Selenium, total	E420/VA	0.000050	mg/L	0.00105		0.05 mg/L	-			
Silicon, total	E420/VA	0.10	mg/L	12.3			-		-	
Silver, total	E420/VA	0.000010	mg/L	<0.000010		-	-	-		
Sodium, total	E420/VA	0.050	mg/L	59.1	200 mg/L	-	-			-
Strontium, total	E420/VA	0.00020	mg/L	0.277		7 mg/L	-			22
Sulfur, total	E420/VA	0.50	mg/L	52.0			-			
Tellurium, total	E420/VA	0.00020	mg/L	<0.00020		-	-	-		
Thallium, total	E420/VA	0.000010	mg/L	<0.000010			-	-		=
Thorium, total	E420/VA	0.00010	mg/L	<0.00010		120	-			
Tin, total	E420/VA	0.00010	mg/L	<0.00010			-		**	
Titanium, total	E420/VA	0.00030	mg/L	<0.00030			-	-		
Tungsten, total	E420/VA	0.00010	mg/L	<0.00010	-	-	-	-		-
Uranium, total	E420/VA	0.000010	mg/L	0.00381		0.02 mg/L	-	122	227	
Vanadium, total	E420/VA	0.00050	mg/L	0.00158			-		***	
Zinc, total	E420/VA	0.0030	mg/L	<0.0030	5 mg/L		-			
Zirconium, total	E420/VA	0.00020	mg/L	<0.00100 DLM		-	-		-	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
Russet Bluff Lower Well	Water	Solids, total dissolved [TDS]		BCDWQG	AO	1620 mg/L	500 mg/L
	Water	Manganese, total		BCDWQG	AO	0.284 mg/L	0.02 mg/L
	Water	Phosphorus, total		BCDWQG	AO	0.195 mg/L	0.01 mg/L
	Water	Manganese, total		BCDWQG	MAC	0.284 mg/L	0.12 mg/L

Page : 7 of 8 Work Order : KS2402662

Client : Cariboo Regional District

Project : Drinking Water - Full Chemical Russet Bluff Lower Well

Key:

BCDWQG British Columbia Drinking Water Quality Guidelines (JAN, 2023)

AO Aesthetic Objective/Other Value
MAC Maximium Acceptable Concentrations

OG Operational Guidance

Page : 8 of 8 Work Order : KS2402662

Client Cariboo Regional District

Project : Drinking Water - Full Chemical Russet Bluff Lower Well

Analytical Results

			Client sample ID	Russet Bluff Lower Well				
Sub-Matrix: Water		S	Sampling date/time	09-Jul-2024	1			
(Matrix: Water)			, ,	09:53				
Analyte	Method/Lab	LOR	Unit	KS2402662-003	BCDWQG	 	 	
					MAC			
Total Metals								
Arsenic, total	E420/VA	0.00010	mg/L	0.00438	0.01 mg/L	 	 	

Please refer to the General Comments section for an explanation of any result qualifiers detected.

Please refer to the Accreditation section for an explanation of analyte accreditations.

No Breaches Found

Key:

BCDWQG British Columbia Drinking Water Quality Guidelines (JAN, 2023)

MAC Maximium Acceptable Concentrations

Appendix C: Emergency Plans

2025 Cariboo Regional District

Emergency Response & Contingency Plan

Russet Bluff Water System

Utilities, Communications, and Emergency Operations Departments 1-1-2025

Russet Bluff Water System – 2025 Emergency Response and Contingency Plan

Contents

SECTION 1: Er	mergency Plan Goals	3
1.1. Resi	liency in Operations	3
1.1.1.	Emergency Response Plan	3
1.1.2.	Regional Agency Coordination	3
1.1.3.	Mutual Aid Agreements	3
1.1.4.	Emergency Power	4
1.1.5.	Ability to Meet Water Demands	4
1.1.6.	Critical Parts Inventory	4
1.1.7.	Critical Staff Resiliency	4
SECTION 2: Ho	ow to Use This Plan	4
SECTION 3: Er	mergency Planning Definitions	4
SECTION 4: Er	mergency Scenarios	5
4.1. Intro	oduction	5
4.2. Eme	rgency Scenario Format	5
4.2.1.	Description of Emergency	5
4.2.2.	Indicators	5
4.2.3.	Actions	5
4.2.4.	Contacts	5
4.2.5.	Event Record	5
SECTION 5: W	ater Supply Contamination	6
5.1. Pote	ntial Causes	6
5.1.1.	Chemical Spill	6
5.1.2.	Flood Event	6
5.1.3.	Confirmed Cross Connection	6
5.1.4.	System Breach	6
5.1.5.	Positive Sample Result	6
5.1.6.	Vandalism	6

Russet Bluff Water System – 2025 Emergency Response and Contingency Plan

SECTION	6: Supply Disruption	7
6.1.	Equipment Failure	7
6.2.	Supply Main Break	8
6.3.	Extended Loss of BC Hydro Power Supply	9
6.4.	Operator Transportation Routes Compromised	LO
6.4.	1. Potential Causes	LO
SECTION	7: Cyber Incident	l1
SECTION	8: Drought	L1
8.1	Introduction	L1
Appendix	x A: Contacts	L2
Appendix	x B: Charts2	L3
Water	Main Break	L4
Critica	l Parts Inventory2	L4
Appendix	x C: Drought Management Plan2	L6
Priorit	y Users2	L7
Water	Restrictions and Conservation Measures	L7
Comm	unication Plan2	L7
Supple	emental or Alternate Sources of Potable Water	L9
Opera	tional Procedures	20
Appendix	x D: Templates	21
Damag	ge Assessment Summary (EOC 415)2	22
Action	Plan (EOC 502)	23
Situati	on Report (EOC 501)	24
Event	Log (EOC 414)	25
Appendix	x E: Communications Templates	26

SECTION 1: Emergency Plan Goals

The Objective of the Cariboo Regional District (CRD) Emergency Response and Contingency Plan (ERCP) is to provide staff and regulatory agencies with a guideline for potential water utility related emergencies.

This Emergency Response and Contingency Plan (ERCP) serves as a guideline to address various emergency situations, recognizing that no two emergencies are exactly alike. Each emergency is described with a general sequence of steps to follow, providing both a structured approach to response and a consistent method for documenting actions taken. Task lists within each emergency section also function as checklists to remind staff of critical items to consider and complete during an emergency. This ERCP includes specific protocols and considerations for the CRD water supply system.

This plan has been prepared to guide the Cariboo Regional District to respond to an emergency arising in the operation of the Russet Bluff Water System. The purpose of the ERCP is to:

- ✓ Ensure staff and the public's safety in carrying out emergency tasks.
- ✓ Provide the earliest and safest response to an emergency condition.
- ✓ Ensure that water quality and public health are not compromised.
- ✓ Ensure that water for firefighting is available.
- ✓ Restore normal water system operation.
- ✓ Protect the natural environment from impacts associated with the system operation in the event of an emergency.
- ✓ Contain property damage.

1.1. Resiliency in Operations

Operational resiliency refers to the capability of an operation to adjust, adapt, and maintain service delivery under emergency conditions. The objective for the CRD Water Utility is to achieve high operational resiliency. Indicators of operational resiliency include the following:

- 1.1.1. **Emergency Response Plan**: A comprehensive ERP is essential in building resilience within operations, providing structured guidance for handling emergencies effectively. This document is an integral part of that resiliency framework.
- 1.1.2. **Regional Agency Coordination**: The ERCP must be shared with regional emergency response agencies, ensuring cohesive support. The CRD Emergency Operations Department serves as the local staging agency for the Provincial Emergency Program.
- 1.1.3. **Mutual Aid Agreements**: In certain emergencies, the CRD may need support from neighboring water utilities. Williams Lake is a nearby utility from which the CRD may

- seek assistance in the future. The CRD is working toward a formal mutual aid agreement based on community protection principles.
- 1.1.4. **Emergency Power**: The Russet Bluff Water System can operate on gravity-fed supply. A standard battery pack is on hand to maintain disinfection if the power grid fails.
- 1.1.5. **Ability to Meet Water Demands**: While the water system meets current demands, the reservoir is small, and there are no fire hydrants in the service area.
- 1.1.6. **Critical Parts Inventory:** Appendix B provides a list of critical parts and their availability. Appendix A includes contact names for Cariboo support agencies offering specialized parts or services.
- 1.1.7. **Critical Staff Resiliency:** Staff's ability to respond and remain calm during extreme events is only evident when tested. Training and reinforcement of sound decision-making at all levels will support preparedness for emergency situations.

SECTION 2: How to Use This Plan

The Water System Emergency Response and Contingency Plan (ERCP) is a guide for handling water system emergencies. The "Actions" section outlines various potential emergencies and provides steps to help minimize further damage.

After an emergency, the CRD will complete a Post Incident Report (see Appendix D). Regular review exercises and updates will strengthen our emergency response capabilities. We ask all plan holders to participate and offer recommendations to continually improve the ERCP.

Remember, the ERCP is only effective if everyone reviews, understands, and contributes to its ongoing development.

SECTION 3: Emergency Planning Definitions

This section provides emergency planning definitions used in this document, following AWWA Manual 19: Emergency Planning for Water Utilities.

Emergency: An unexpected event that may compromise water quality or reduce the availability of domestic, irrigation, or fire flow water for the community.

Minor Emergency: A localized, routine incident impacting a small number of customers, such as a small pipe break, vehicle collision with a hydrant, brief power outage, or minor service repair. Minor emergencies should be manageable without special resources and, if effectively handled, can be prevented from escalating into major emergencies.

Major Emergency: A significant event affecting a large portion of the water system, posing risks to water quality or quantity and potentially endangering community health and safety. Major emergencies are rare but impactful.

Natural Disaster: Events caused by natural forces beyond human control, including wildfires, earthquakes, floods, tornadoes, heat domes, freezing, and other severe weather-related incidents.

Human-Caused Disaster: Disasters resulting from human actions, whether accidental or intentional. These may include human error, accidents, labor disputes, negligence, vandalism, sabotage, terrorism, biological contamination, or chemical spills.

Hazard: A source of potential harm or danger linked to a disaster, such as unstable slopes from a creek wash-out or ground shaking from an earthquake.

Lifeline Supply: Essential community services that support health, safety, and sustenance. Lifeline utilities include water, wastewater, electricity, and natural gas, as well as critical transportation, communication, healthcare, and emergency operations centres.

SECTION 4: Emergency Scenarios

4.1. Introduction

Sections 5 and 6 list potential water system emergencies related to the physical components of the water supply. Section 7 describes the steps for a cyber threat or vandalism.

4.2. Emergency Scenario Format

Each emergency scenario in this ERCP follows a consistent format:

- 4.2.1. **Description of Emergency**: Describes each potential emergency for easy reference. Sections 5 and 6 cover physical water service issues, while Section 7 addresses cyber incidents and vandalism.
- 4.2.2. **Indicators**: Outlines how each emergency can be recognized, either by CRD staff or external contacts.
- 4.2.3. **Actions**: Lists response steps for CRD staff, generally in recommended order. This list serves as a guideline, and the lead Water Operator can use the provided checklist to verify all necessary actions are taken.
- 4.2.4. **Contacts**: Lists relevant contact agencies; specific contacts are found in the ERCP's Communications Section.
- 4.2.5. **Event Record**: A checklist at the page bottom summarizes the event, records whether photos were taken, and tracks emergency reporting.

Russet Bluff Water System – 2025 Emergency Response and Contingency Plan

All events, including minor repairs and leaks, should be documented and sent to the CRD Office for electronic filing. Each event should be recorded by date. Large events should have dedicated folders containing photos and data, following a standardized naming protocol.

SECTION 5: Water Supply Contamination

Description of Emergency: Contamination has been detected or possible contamination is present.

Indicators: Public notification (taste, odour or colour observations), poor water sample results, visible observations made by Water Operators, cross connection with potential contamination.

5.1. Potential Causes

- 5.1.1. Chemical Spill (e.g. transport truck, industry)
- 5.1.2. Flood Event
- 5.1.3. Confirmed Cross Connection
- 5.1.4. System Breach (e.g. water main break) *see 6.2.
- 5.1.5. Positive Sample Result (e.g. E. coli or other immediate threat to public health contaminant)
- 5.1.6. Vandalism

Actions:

- 1) Notify Water Operator.
- 2) Notify Drinking Water Officer (DWO).
- 3) Assess threat level (see Appendix B).
- 4) Notify Communications Department.
- 5) Water Operators to investigate site and inform Manager of Utilities of possible situation. Manager to contact Interior Health.
- 6) Confirm that the source of contaminant is mitigated.
- 7) If chemical contamination confirmed or highly suspected to be present:
 - a) Attempt to isolate.
 - b) Discuss with Engineer, Biologist/Chemist (Lab) and DWO to develop a reasonable and representative sampling program.
 - c) Contact Lab and arrange bottles if required and collect samples for rush analysis.

Russet Bluff Water System – 2025 Emergency Response and Contingency Plan

- 8) Report any spills to the Provincial Agency responsible (see Appendix A).
- 9) In an extreme situation of contamination, consider shutting down all supply pumps.
 - a) Pump station would shut off and "Do Not Use" notices would be provided to the public. CRD senior management would make this call.
- 10) Communication: Begin public notification if required and follow Water Quality Notification Procedures.
- 11) Continue discussion with appropriate experts for moving forward.
- 12) Discussions to consider alternate water source if needed. Involve Emergency Operations Department and Notify Fire Department.
- 13) Continue monitoring until water quality is back to normal and IH gives approval to lift advisory or notice.
- 14) Complete documentation:
 - a) Record of events, include times and dates.
 - b) Complete a comprehensive damage assessment.
 - c) Investigate potential causes.
 - d) After action report.

SECTION 6: Supply Disruption

6.1. Equipment Failure

Description of Emergency: This type of emergency is typically caused by extreme weather events that place a very high demand on the Water Treatment Plant, or any other situation where water demands are high, and equipment or infrastructure reduces the ability to maintain maximum output.

Indicators: Visual observations by Water Operators. Failure of equipment as identified by SCADA and alarms.

Actions:

- 1) Document Situation: Note date, time, location and means of event recognition.
- 2) Notify Water Operator.
- 3) Notify Manager.
- 4) Notify Communications Department.

- 5) If cause is identified as a main break, see section 6.2.
- 6) Well Site Investigation: Generally, this problem is caused by high flows and overheating VFD's.
- 7) Check in the pumphouse for mechanical issues such as temperatures on variable frequency drive (VFD) displays.
- 8) Check all SCADA pages and trends to determine what is operational, what has failed, or what is at risk of failure.
- 9) Check on alarms.
- 10) Note status of chlorine disinfection, reservoir level, source pump status, chemical dosing status, and raw water flows.
- 11) Check all necessary equipment to confirm proper functionality.
- 12) Check inventory for parts that may be available to aid in necessary repairs. If necessary, contact Williams Lake Public Works for assistance.
- 13) If the issue stems from the VFD's, allow to cool and contract electrician if necessary.
- 14) If issue is due to drawdown in Supply Well, consult Drought Management Plan (Appendix C) and proceed to next step.
- 15) If problem persists:
 - ✓ Communicate with Interior Health, issue an advisory as recommended (see Section 1).
 - ✓ Implement emergency water restrictions (Communications Department).
 - ✓ Contact Williams Lake Fire Department and CRD Protective Services Department to inform them of the situation.
- 16) Complete documentation:
 - a) Record of events, include times and dates.
 - b) Complete a comprehensive damage assessment.
 - c) Investigate potential causes.

6.2. Supply Main Break

Description of Emergency: Failure or damage to a water supply main causing loss of water and/or pressure.

Indicators: SCADA alarms indicating pressure loss, calls from residents or staff observations.

Actions: Steps to be taken by CRD staff:

Russet Bluff Water System – 2025 Emergency Response and Contingency Plan

- 1) Contact Manager of Utilities.
- 2) Contact Water Operator.
- 3) Determine location.
- 4) Stop the flow of water by closing valves and isolating the break, depending on the scale of the break (see chart in Appendix B); attempt to maintain positive pressure.
- 5) Contact Manager and describe the emergency.
- 6) Determine what section of the system has been affected by the depressurization.
- 7) If there is a potential that the system has been contaminated, the Manager of Utilities will contact Interior Health for recommendations on issuing a Water Advisory. See Appendix E (follow Communications procedures).
- 8) Make the site safe by implementing traffic control: block road, if necessary, contact traffic control contractor (see Appendix A).
- 9) If possible, mitigate danger to the public and further damage of infrastructure or property. If necessary and feasible, set up sediment control measures and de-chlorinated water released.
- 10) Assess immediate damage.
- 11) Coordinate repair plans with appropriate contractors (see contacts).
- 12) Contact the Provincial Agency responsible (see Appendix) for large discharges of chlorinated water including;
- 13) If there is significant sediment or chlorinated water in streams.
- 14) Call Fire Department to inform them when hydrants are in or out of service.
- 15) Complete documentation:
 - a) Record of events, include times and dates.
 - b) Complete a comprehensive damage assessment.
 - c) Investigate potential causes.
 - d) After action report.

6.3. Extended Loss of BC Hydro Power Supply

Description of Emergency: The loss of power will stop the pumping systems to supply water to the distribution system and from filling the reservoir. With no power, a full reservoir has approximately 48 hours of water available.

Russet Bluff Water System – 2025 Emergency Response and Contingency Plan

Indicators: SCADA alarms

Actions:

- 1) Source a generator.
- 2) Change system settings if necessary to keep reservoirs topped up.
- 3) If sudden phase loss or total power loss causes equipment failure see Section 6.
- 4) If issues with power supply persist:
 - ✓ Contact BC Hydro for information on the timelines for power restoration.
 - ✓ Communicate with Interior Health, issue an advisory as recommended (see Section 1).
 - ✓ Implement emergency water restrictions (Communications Department).
 - ✓ Potentially throttle down the pressure within the distribution to reduce water loss (always above 20 psi).
 - ✓ Contact Williams Lake Fire Department and CRD Protective Services Department to inform them of the situation.

6.4. Operator Transportation Routes Compromised

6.4.1. Potential Causes

- Forest fire
- Accident
- Mechanical issues with vehicle
- Construction

Description of Emergency: The usual transportation route to the Russet Bluff area is blocked (e.g., by a forest fire or accident), and no operator can be onsite to perform duties.

Actions:

- 1) Contact Manager of Utilities.
- 2) Manager will inform Interior Health Officer of situation.
- 3) Continue to monitor system using SCADA.
- 4) If issue persists:
 - ✓ Contact Williams Lake or other Regional Operators for assistance.

✓ Reach out to local contact if physical checks are needed. Preferably local contractor with

system experience (see Appendix A).

✓ Contact the Communications Department to issue applicable advisories (at the

recommendation of Interior Health).

5) Complete documentation:

a) Record of events, include times and dates.

b) Complete a comprehensive damage assessment.

c) Investigate potential causes.

SECTION 7: Cyber Incident

(Omitted for security reasons.)

SECTION 8: Drought

8.1 Introduction

Drought is often caused by a long duration of inadequate rainfall or snowmelt to replenish the level of the water source. It can also be the result of a breakdown in a crucial piece of a water system's infrastructure; or a prolonged issue with water quality that prevents the supply of potable water for an extended period. All of these circumstances can result in a significant depletion in the source capacity or even a complete loss of source. The Cariboo Regional District's Drought Management Plan for the Russet Bluff Water System serves as a guide to monitoring, managing and conserving water use in the event of an impending drought. The objectives of this

Plan are to:

1) Identify the priority users of the water supply.

2) Provide direction on water conservation before and during the drought period.

3) Establish a guideline for communicating issues and instructions to users and other key

contacts.

4) List supplemental or alternate sources of potable water in the event of a prolonged drought.

Appendix C outlines the Cariboo Regional District's Drought Management Plan.

11

Appendix A: Contacts

(Omitted for security reasons.)

Appendix B: Charts

Water Main Break

	Water Main Break Severity Chart				
Class 1	Class 2	Class 3	Class 4	Class 5	
Routine	Minor	Substantial	Major	Catastrophic	
Small enough to leave until repairs are convenient	Water Pooling	Isolation Needed	Large area needs to be isolated	Complete Distribution System Shut down	
Positive Pressure Maintained	Positive Pressure Maintained	Positive Pressure may not be possible	Loss of Pressure in large area of distribution system	Complete system pressure loss (e.g. drained reservoir)	
Consult with DWO if any concerns.	Advisory may be required, consult with DWO.	Advisory Needed, contact Interior Health. Assess damage.	Advisory needed, contact interior health. Assess damage	Advisory needed, contact interior Health. initiate EOC.	
Flush line (localized)	sample for bacteriological contamination after flushing lines as per C651-14 (localized)	Sample for bacteriological contamination after flushing lines as per AWWA C651-14	Chemical and bacteriological sampling may be needed. Possible unidirectional flushing and super chlorination needed as per AWWA C651-	Chemical and bacteriological sampling needed at various points in the system. System wide flushing needed. Super chlorination required as per AWWA C651-14	

Critical Parts Inventory

			Critical Part	ts Inventory	,		
Part	Use	Location Stored	Vendor	Part	Use	Location Stored	Vendor

		 · · · · · · · · · · · · · · · · · · ·	

Russet Bluff Water System – 2025 Emergency Respo	onse and Contingency F	^ଧ an
--	------------------------	-----------------

Appendix C: Drought Management Plan

DROUGHT MANAGEMENT PLAN

Priority Users

The area served by the Russet Bluff Water System is comprised of an estimated 250 residents. In a drought situation, the provision of water will be prioritized as follows:

Priority Level	User	Comments
1	Residents	The CRD is obligated to provide water to the residents
		served by the Russet Bluff Water System for basic health
		and sanitation needs.

Water Restrictions and Conservation Measures

The following restrictions will be imposed and conservation measures recommended to Russet Bluff Water System users at various stages prior to and during a drought:

STAGE 1: PREPAREDNESS			
Permitted Uses	Restrictions		
Drinking water	May 1 to Oct. 1: Lawn watering on reduced days for		
Bathing	reduced hours, per bylaws.		
Handwashing dishes or using dishwasher	Conservation Measures		
Washing machine	Install water-saving devices.		
Watering plants with a hose or watering can			
Bathing pets.			
Washing vehicles.			
STAGE 2: IMPENDING DROUGHT – CONSERVATION			
Permitted Uses	Restrictions		
Drinking water	Lawn watering days and hours restricted further.		
Bathing	Wash vehicles only if absolutely necessary.		
Handwashing dishes or using dishwasher	Conservation Measures		
Washing machine	Bathe pets only as needed.		
Watering plants with a hose or watering can	Use washing machine for full loads only.		
	Use dishwasher for full loads only.		
STAGE 3: DROUGHT – RESTRICTIONS			
Permitted Uses	Restrictions		
Drinking water (all users)	No watering of lawns or watering of plants, per bylaws.		
Bathing	No bathing of pets unless absolutely necessary.		
Handwashing dishes or using dishwasher	No washing of vehicles.		
Washing machine	No filling of swimming pools.		
	No power-washing.		
	Conservation Measures		
	Bathe only as needed and/or reduce time in shower.		
	Use washing machine for full loads only.		
	Use dishwasher for full loads only.		

Communication Plan

Communication between the CRD and users of the Russet Bluff Water System, as well as with key operational contacts, is imperative during an emergency situation. Providing timely and clear

information and instructions greatly reduces confusion, frustration and anxiety, and enables outside agencies to provide assistance more effectively if needed.

STAGE 1: PREPAREDNESS					
Water use is routinely higher from mid-Spring to the end of Summer each year due to less rainfall, increased					
lawn and garden maintenance, swimming pools, mo	ore frequent car-washing and showers, etc.				
Water levels are constantly monitored, and watering	g restrictions are put in place annually from May 1 to				
October 1 as a preventative measure to minimize de	epletion of the water supply during these months.				
Procedures (Concurrent)	Target				
Finance Dept. mails notice of water restrictions	Residents				
and water conservation recommendations with					
annual utility bills in April of each year.					
Communications Dept. posts notice of water	All users of the Russet Bluff Water System				
restrictions and water conservation					
recommendations on website and social media.					
Communications Dept. sends notice of water	Subscribed users.				
restrictions and water conservation					
recommendations by email.					
Water Operators post notice of water restrictions	Users of the Russet Bluff Water System who don't have				
and water conservation recommendations on	access to a computer.				

STAGE 2: POTENTIAL THREAT – DIMINISHED WATER SUPPLY

bulletin boards at 108 Mall, gas station, mailboxes

If there is little snowmelt in the Spring and rainfall in the Spring/Summer is not enough to bring the source of the water supply to an adequate level, further restrictions on water use may be required. Prolonged water quality issues may result in having to obtain water from an alternate source until rectified. Any significant or ongoing issues would indicate that action is required to prevent the possibility of a water supply crisis.

Proce	dures	Target
1.	Inform key contacts of possible threat to water source:	Manager of Utilities
	Water Operators notify Manager of Utilities	Drinking Water Officer
	Manager of Utilities informs other key contacts	Electoral Area Director
		Manager of Fire Administration
2.	At Interior Health's direction, Manager of Utilities and	All users of the Russet Bluff Water
	Communications Dept. have public notice mailed to users,	System
	posted on website, social media, and on local bulletin boards.	
	Communications Dept. sends public notice by email.	Subscribed users
3.	Manager of Utilities notifies CRD Managers involved in	Chief Administrative Officer
	Emergency Planning as a precautionary measure.	Manager of Communications
		Manager of Emergency Programs
4.	Manager of Utilities, Water Operators and Electoral Area	All users of the Russet Bluff Water
	Director hold public meeting to discuss potential drought,	System
	further restrictions required and recommended conservation	
	measures.	
5.	Manager of Utilities notifies other agencies as a precautionary	City of Williams Lake
	measure that assistance may be required if situation can't be	Ministry of Water, Land and Resource
	rectified.	Stewardship
		Ministry of Emergency Management
		and Climate Readiness

STAGE 3: EMERGENCY - SIGNIFICANT DEPLETION OR LACK OF SOURCE

The following situations are considered critical:

- An inability to keep the water supply at a level that will provide enough water to meet the basic health and sanitation needs of the users.
- A prolonged issue with the water system infrastructure that results in the inability to provide water to the users
- A severe or prolonged water quality issue that cannot be easily rectified.
- The inability to provide an adequate water supply for fire protection.
- An ongoing water supply issue that results in significant losses for businesses in the service area.

Proce	edures	Target
1.	Inform key contacts of crisis situation. Discuss further steps: Water Operators inform Manager of Utilities. Manager of Utilities notifies other key contacts.	Manager of Utilities Drinking Water Officer Electoral Area Director Chief Administrative Officer Manager of Fire Administration Manager of Communications
2.	At Interior Health's direction, Manager of Utilities and Communications Dept. have public notice mailed to users, and posted on website, social media, and local bulletin boards.	Manager of Emergency Programs All users of the Russet Bluff Water System
	Communications Dept. sends notice of emergency situation by email and via Voyent Alert.	Subscribed users
3.	Manager of Utilities and Communications Dept. post notice in local newspaper; make radio announcements.	All users of the Russet Bluff Water System
4.	Manager of Utilities, Water Operators and Electoral Area Director hold public meeting to discuss further steps.	All users of the Russet Bluff Water System
5.	Manager of Utilities notifies other agencies. Discuss what assistance may be available.	City of Williams Lake Ministry of Water, Land and Resource Stewardship Ministry of Emergency Management and Climate Readiness

Supplemental or Alternate Sources of Potable Water

Supplemental or Alternate Source	Contact Information	Capacity Available	Estimated Time To Deliver	Estimated Cost
Backup Water Source				
Reservoir Rental Company				
Bulk Haul Water	Triple P Sanitation (upon verification of IH permit) Triple P Sanitation (upon verification of IH permit)	Not specified Not specified	Pick up only	\$100 upon opening a/c, plus \$0.15 per litre
Other Water Supplier	Triple P Sanitation (upon verification of IH permit)	Not specified		

Supplemental or Alternate	Contact	Capacity	Estimated Time	Estimated
Source	Information	Available	To Deliver	Cost
Bottled Water	Cariboo Water Purification Centre	Not specified		
	Cool Clear Water	Not specified	Tuesdays	\$6.50 / 5 Gal \$4.00 / 3 Gal
	Williams Lake Water Factory	Not specified		

Operational Procedures

Actio	n	Person Responsible
1	Ensure pump is shut off (to protect pump).	Water Operator
2	Notify all users by social media, email distribution, radio and public bulletins. High risk users to be notified by telephone call. Situationally assessed for best means of communication process.	Manager of Utilities Manager of Communications
3	Contact government agencies (see below) for advice and assistance.	Manager of Utilities
4	Arrange alternate source (e.g. bottled water, bulk hauler and storage tank).	Manager of Utilities

Government Agency Contacts:

- Drinking Water Officer
- Local government's Emergency Program Coordinator
- Ministry of Forests, Lands and Natural Resource Operations
- Others as necessary, depending on severity (ie. Fire Department)

Appendix D: Templates

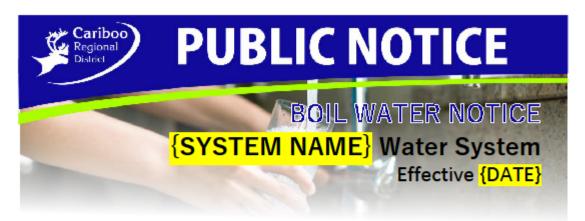
Damage Assessment Summary (EOC 415)

	DAMAGE	ASSESSME	NT SUMMA	RY			
	Event:	Time:		Date:			
	Operational Period:	PEP Task #:		Position:			
		Number	Estimated Value	Comments			
	 Municipal Facilities Damaged 						
	 Municipal Facilities Destroyed 						
	 Public Facilities Damaged 						
	 Public Facilities Destroyed 						
	 Provincial Facilities Damaged 						
Public Property	 Provincial Facilities Destroyed 						
Pro	 Federal Facilities Damaged 						
lic	 Federal Facilities Destroyed 						
Puk	 Roads Damaged 						
	 Roads Destroyed 						
	 Bridges Damaged 						
	 Bridges Destroyed 						
	 Railroads Damaged 						
	 Railroads Destroyed 						
	 Water Supply Damaged 						
	 Sewers Damaged 						
	Total Public Damage:						
	Residential Buildings Damaged						
4	 Residential Buildings Destroyed 						
obei	 Businesses Damaged 						
Private Property	 Businesses Destroyed 						
vate	Agriculture Damaged						
P	Agriculture Destroyed						
	Total Public Damage:						
Prio	rity Repairs/Restoration:						
Prep	Prepared By: Date and Time:						

Action Plan (EOC 502)

	EOC ACTION PLAN										
Eve	nt:			Da	ite:			Tin	ne:	_	
Ope Peri	rational od:	PEP Task #:		Pr	ера	red By:					
Obje	ectives: (In priority ord	er, for the desig	gnated (operational	per	iod)					
Tasi	Estimated Function Completion Tasks/Action Items: Assigned Time										
Atta	chments: (Check if at	tached)									
<u></u>	Organization Chart			Information	_	an		Commun	nica	tion Plan	
屵	EOC Floor Plan Situation Map			ortation Plan	an		井				
Situation Map Evacuation Plan Recommended By (Planning Section Chief): Approved By (EOC Director)						ctor):					
Dist	Risk	C Director Management O Son Officer rmation Officer ted for ALL EOC		Operation Section Chief Planning Section Chief Logistics Section Chief Finance/Administration Section Chief Other				Chief			

Situation Report (EOC 501)


	EOC SITUATION REPORT									
	☐ Community ☐ PREOC Ope	/ Local Authority rational Area Coo	rdinator							
		(Nam	e and Position)							
Position:			_	☐ Update # Final						
Phone #: Situation Forecast: Fax #: Improving Unchanged Deteriorating										
Highlights (Situa	ational Overview –	Key Points):								
-		ces / Information /	* *							
People Impacte	d (Estimated / Col	nfirmed):								
# Evacuated	# Injured	# Homeless*	# Missing	# Dead	# Hospitalized					

^{*} As a result of the emergency event

Event Log (EOC 414)

Russet Bluff Water System – 2025 Emergency Response and Contin	igency	v Plan
--	--------	--------

Appendix E: Communications Templates

The Cariboo Regional District has issued a Boil Water Notice to users of the {SYSTEM NAME} Water System, pursuant to a request of a Drinking Water Officer under Section 14 of the Drinking Water Protection Act. This Notice remains in effect until further notice.

The Cariboo Regional District's water systems are tested regularly to ensure they meet public health regulations. This boil water notice is being issued because {REASON}. This notice is being issued {CHOOSE: as a precautionary measure to protect public health. OR in order to protect public health and safety from significant health risks presented by pathogens in the water supply.}

All users of the {WATER SYSTEM NAME} Water System are asked to bring water to a rolling boil for a minimum of one minute before using water from the system for:

Drinking (or use an alternate, safe source of water)

Cooking (if not boiled)

Brushing teeth

Washing Dishes

Washing fruits or vegetables to be eaten raw

Watering animals

Also, please use hand sanitizer after washing hands.

If you have further questions, please call Environmental Services at 1-800-665-1636 during regular office hours.

For more information about boil water advisories and service interruptions in the CRD and what to expect, visit <u>cariboord.ca/water-notices-and-advisories</u>. To receive updates on CRD water systems and other relevant information within the CRD, residents are reminded to subscribe to the latest news on our website at <u>cariboord.ca/subscribe</u>, Residents can also sign up the Cariboo Chilcotin Emergency Notification System to be notified directly of emergency orders and alerts or utility service interruptions at <u>cariboord.ca/EmergencyNotifications</u>.

cariboord.ca

The Cariboo Regional District has issued a Do Not Use Notice to users of the {SYSTEM NAME} Water System, pursuant to a request of a Drinking Water Officer under Section 14 of the Drinking Water Protection Act. This Notice remains in effect until further notice.

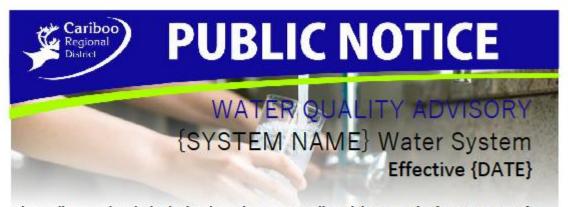
The Cariboo Regional District's water systems are tested regularly to ensure they meet public health regulations. Due to the presence of {if known, be specific, or if unknown say "contaminants in the water supply posing an immediate threat to resident's safety}, the Cariboo Regional District is implementing this until further notice. Follow all instructions below:

All users of the {WATER SYSTEM NAME} Water System are asked to immediately stop using water from the system for any purpose. This includes: drinking, making beverages or ice, brushing teeth, preparing or washing food, bathing, water for animals, washing anything (including vehicles), and watering plants.

Do not turn your taps on for any reason. Boiling water will NOT make it safe! Water from your hot water tank may also be unsafe, and you are advised to consult a qualified plumber before draining the tank.

The Cariboo Regional District has contacted Interior Health and the Ministry of Environment to request their cooperation in investigating this matter. In addition, the Cariboo Regional District is taking immediate actor to find another source of water supply for residents of {WATER SYSTEM NAME}.

During this time, an alternate water source will be available at {ADDRESS AND OPERATING HOURS}.


If you have further questions, please call Environmental Services at 1-800-665-1636 during regular office hours.

For more information about boil water advisories and service interruptions in the CRD and what to expect, visit <u>cariboord.ca/water-notices-and-advisories</u>. To receive updates on CRD water systems and other relevant information within the CRD, residents are reminded to subscribe to the latest news on our website at <u>cariboord.ca/subscribe</u>. Residents can also sign up the Cariboo Chilcotin Emergency Notification System to be notified directly of emergency orders and alerts or utility service interruptions at <u>cariboord.ca/EmergencyNotifications</u>.

cariboord.ca

The Cariboo Regional District has issued a water quality advisory, to the {SYSTEM NAME} Water System users because of {issue} levels exceeding the *Guidelines for Canadian Drinking Water Quality*. This Advisory remains in effect until further notice.

The Cariboo Regional District's water systems are tested regularly to ensure they meet public health regulations. Health Canada's Guidelines for Drinking Water has established a maximum acceptable concentration (MAC) for {issue} in drinking water of {standard}. Recent water samples submitted show {issue} concentrations that exceed the MAC.

Add information provided by Health Canada or Interior Health about the nature of the water quality advisory. This section requires approval from a Drinking Water Officer.

{Other safety instructions or advisories. I.e. is the water safe for other non-consumption purposes, how does boiling water impact it, etc.}

If you have further questions, please call the Environmental Services department at 1-800-665-1636 during regular office hours.

For more information about boil water advisories and service interruptions in the CRD and what to expect, visit <u>cariboord ca/water-notices-and-advisories</u>. To receive updates on CRD water systems and other relevant

cariboord.ca

The Cariboo Regional District has issued a water quality advisory, to the {SYSTEM NAME} Water System users because of manganese (Mn) levels exceeding the *Guidelines for Canadian Drinking Water Quality*. This Advisory remains in effect until further notice.

The Cariboo Regional District's water systems are tested regularly to ensure they meet public health regulations. Health Canada has established a maximum acceptable concentration (MAC) for manganese in drinking water of 0.12 mg/L. Recent water samples submitted show manganese concentrations that exceed the MAC.

Manganese (Mn) is an element found in air, food, soil and drinking water. While a small amount of Mn is essential for human health, new Health Canada research has shown drinking water with too much Mn can be a risk to health for infants and young children.

Infants and young children are the most sensitive and vulnerable population, as their bodies absorb more manganese and cannot regulate or remove the chemical as readily as adults and older children. As a result, the drinking water from this system must not be used to prepare formula for bottle-fed infants. An alternate source of safe drinking water, such as bottled water, must be used when preparing formula for infants and young children. Boiling the water will <u>not</u> lower the manganese level.

Breastfed infants are generally considered at lower risk to manganese exposure as the transfer of manganese to breast milk is limited. Pregnant or breastfeeding women who have concerns may wish to use a safe, alternate source of drinking water or consult with a healthcare professional.

Water exceeding the MAC for manganese can be used for cooking and drinking by non-vulnerable groups and is still considered safe for hand washing, bathing and showering. If you have further questions, please call the Environmental Services department at 1-800-665-1636 during regular office hours.

For more information about boil water advisories and service interruptions in the CRD and what to expect, visit <u>cariboord.ca/water-notices-and-advisories</u>. To receive updates on CRD water systems and other relevant information within the CRD, residents are reminded to subscribe to the latest news on our website at <u>cariboord.ca/subscribe</u>.

cariboord.ca

The Cariboo Regional District has issued a water quality advisory for users of the Forest Grove Water System because of a positive test result for low coliform found in the system.

For this reason, as precautionary measure, any high-risk users, including those with weakened immune systems, young children and those on dialysis are advised to:

- use purchased bottled water or boiled water for drinking, brushing teeth, dishwashing, preparing food, and making ice, or
- bring water to a roiling boil for one minute, then cool to an appropriate temperature before using.

The CRD regularly tests the water system as part of its Water Quality Monitoring Program. The advisory will remain in effect until further notice. We apologize in advance for any inconvenience this may cause.

When satisfactory results are reported from the required testing, customers will be notified that the advisory has been lifted. If you have questions, please call the Environmental Services department at 1-800-665-1636. If calling outside of regular business hours (8:30 a.m. to 4:30 p.m. Monday to Friday), please dial "5" when prompted to reach our emergency after hours contact.

For more information about boil water advisories and service interruptions in the CRD and what to expect, visit <u>cariboord.ca/water-notices-and-advisories</u>.

To receive updates on CRD water systems and other relevant information within the CRD, residents are reminded to subscribe to the latest news on our website at <u>cariboord.ca/subscribe</u>.

cariboord.ca

