
FOUNDATION WALL INSULATED CONCRETE FORMS (ICF) = 4.03 RSI

TYPE OF ASSEMBLY: Below Grade Wall

REQUIRED EFFECTIVE RSI:

√3.97

Assembly detail: (indicate type and location of air barrier and vapour barrier in detail drawing)

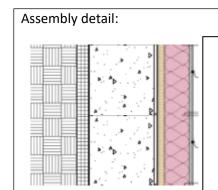
- Exterior Damp Proofing
- R22 (Min R 21.41) Insulated Concrete Forms
- ½" (12.7mm) Drywall

	Parallel Path	Calc:	Iso Planes Values:	
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):	
	Resistance	Resistance		
	at Framing	at Cavity		
	(RSI) *(2):	(RSI) *(2):		
Soil			0.0	
Exterior Damp Proofing			0.0	
R22 Insulated Concrete Forms			3.83	
½" Drywall			0.08	
Interior Air Film			0.12	
Sub-total:	0	0	4.03	
Framing/Cavity percentage *(1):	%	%		

RSI parallel =
$$\frac{100}{\text{(Frame \% \div RSI Frame)} + \text{(Cavity \% \div RSI Cavity)}} = \text{RSI parallel effective}$$

RSI parallel = $\frac{100}{\text{(0 ÷ 0)} + \text{(0 ÷ 0)}} = 0$ RSI parallel effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage


^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

FOUNDATION WALL EXTERIOR 1" XPS 2x6 @ 24" oc R20 BATT = 4.06

TYPE OF ASSEMBLY: Below Grade Wall

REQUIRED EFFECTIVE RSI:

- 1" Extruded styrofoam (XPS)
- Exterior Damp Proofing
- 8" Concrete Foundation Wall
- ½" Air space
- 2x6 SPF #2 Studs @ 24" on centre
- R20 Batt Insulation
- 6 Mil Poly (*Air & Vapour Barrier*)
- ½" (12.7mm) Drywall

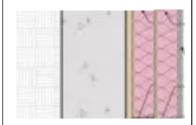
	Parallel Path	Calc:	Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Soil			0.0
1" Extruded polystyrene Type 2, 3, 4			0.88
Exterior Damp Proofing			0.0
8" Concrete Foundation Wall			0.08
½" Air space			0.09
2x6 Studs @ 24" o/c	1.19	-	-
R20 Batt Insulation	-	3.52	-
6 Mil Poly			0.0
½" Drywall			0.08
Interior Air Film			0.12
Sub-total:	1.19	3.52	1.25
Framing/Cavity percentage *(1):	13%	87%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(13 ÷ 1.19)} + \text{(87 ÷ 3.52)}}$ = 2.81 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (2.81) + (1.25) = 4.06 RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI


FOUNDATION WALL 2-2x4 @ 24 oc R14 R12 BATT = 3.99 RSI

TYPE OF ASSEMBLY: Below Grade Wall

REQUIRED EFFECTIVE RSI:

√3.97

Assembly detail: (indicate type and location of air barrier and vapour barrier in detail drawing)

- Exterior Damp Proofing
- 8" Concrete Foundation Wall
- 1/2" Airspace
- 2-2x4 SPF #2 Studs @ 24" on centre
- R14 Batt Insulation
- R12 Batt Insulation
- 6 Mil Poly (*Air & Vapour Barrier*)
- ½" (12.7mm) Drywall

	Parallel Path	Calc:	Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Soil			0.0
Exterior Damp Proofing			0.0
8" Concrete Foundation Wall			0.08
½" Air Space			0.09
2-2x4 Studs @ 24" o/c	1.51	-	-
R 14 Batt Insulation	-	2.46	-
R 12 Batt Insulation		2.11	
6 Mil Poly			0.0
½" Drywall			0.08
Interior Air Film			0.12
Sub-total:	1.51	4.57	0.37
Framing/Cavity percentage *(1):	13%	87%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(13 ÷ 1.51)} + \text{(87 ÷ 4.57)}}$ = 3.62 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (3.62) + (0.37) = 3.99 RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

FOUNDATION WALL 2x6 @ 24" oc SPRAY FOAM = 4.02 RSI

TYPE OF ASSEMBLY: Below Grade Wall

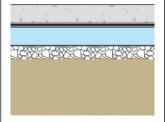
REQUIRED EFFECTIVE RSI:

Assembly detail: (indicate type and location of air barrier and vapour barrier in detail drawing)

- Exterior Damp Proofing
- 8" Concrete Foundation Wall
- ½" space to studs
- 2x6 SPF #2 Studs @ 24" on centre
- Spray foam medium density entire cavity
- ½" (12.7mm Drywall)

	Parallel Path	Calc:	Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Soil			0.0
Exterior Damp Proofing			0.0
8" Concrete Foundation Wall			0.08
½" space to studs			0.0
2x6 Studs @ 24" o/c	1.19	-	-
Sprayed polyurethane foam medium	-	5.49	-
density			
½" Drywall			0.08
6 Mil Poly			0.0
Interior Air Film			0.12
Sub-total:	1.19	5.49	0.28
Framing/Cavity percentage *(1):	13%	87%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(13 ÷ 1.19)} + \text{(87 ÷ 5.49)}}$ = 3.74 RSI parallel effective


RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (3.74) + (0.28) = 4.02 RSI effective THERFORE WORKS WITH OR WITHOUT AN HRV

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

UNHEATED SLAB BELOW FROST 3.5" XPS (Min R 15.75) = 3.28 RSI

TYPE OF ASSEMBLY: Unheated Floor <u>Below</u> Frost REQUIRED EFFECTIVE RSI: **√** 2.98

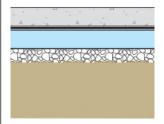
- 4" Concrete Slab
- 6 Mil Poly Air/Soil Gas Barrier sealed to foundation
- 3.5" (Min R 15.75) Extruded Styrofoam (XPS) Insulation below entire slab
- 2" Extruded Styrofoam Insulation (Vertically at edge of slab)
- 4" granular layer
- Compacted Fill or Undisturbed Soil

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Interior Air Film			0.16
4" Unheated Concrete Slab			0.04
3.5" Extruded Polystyrene (XPS)			3.08
Types 2,3, and 4			
6 Mil Poly Air Barrier			0.0
4" granular layer			-
Compacted fill			-
Sub-total:	-	-	3.28
Framing/Cavity percentage *(1):	-	-	

RSI parallel =
$$\frac{100}{\text{(Frame \% \div RSI Frame)} + \text{(Cavity \% \div RSI Cavity)}} = \text{RSI parallel effective}$$

RSI parallel = $\frac{100}{\text{($\div$) + ($\div$)}} = \text{RSI parallel effective}$

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective
$$(0.00) + (3.28) = 3.28$$
 RSI effective


^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

HEATED SLAB OR UNHEATED SLAB ABOVE FROST 4" XPS (Min R 18.51) = 3.72 RSI

TYPE OF ASSEMBLY: Heated or Unheated Floor Above Frost

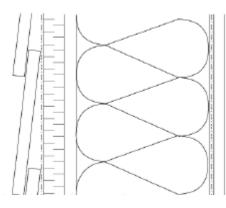
REQUIRED EFFECTIVE RSI: **√** 3.46

- 4" Concrete Slab
- 6 Mil Poly Air/Soil Gas Barrier sealed to foundation
- 4" (Min R 18.51) Extruded Styrofoam (XPS) Insulation below entire slab
- 2" Extruded Styrofoam Insulation (Vertically at edge of slab)
- 4" granular layer
- Compacted Fill or Undisturbed Soil

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Interior Air Film			0.16
4" Heated Concrete Slab			0.04
4" Extruded Polystyrene (XPS)			3.52
Types 2,3, and 4			
6 Mil Poly Air Barrier			0.0
4" granular layer			-
Compacted fill			-
Sub-total:	-	-	3.52
Framing/Cavity percentage *(1):	-	-	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective
$$(0.00) + (3.28) = 3.72$$
 RSI effective


^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

EXTERIOR WALL VINYL SIDING 1" Semi-rigid 2x6 @ 16" oc R22 BATT = 3.69 RSI

TYPE OF ASSEMBLY: Above Grade Wall

REQUIRED EFFECTIVE RSI:

- **Vinyl Siding**
- 1" Semi-Rigid Rock Wood
- **Tyvek Sheathing Paper**
- 3/8" OSB Sheathing
- 2x6 SPF #2 Studs @ 12" on centre
- **R22 Batt Insulation**
- 6 Mil Poly
- ½" (12.7mm) Drywall

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Exterior Air Film			0.03
Vinyl Siding			0.11
1" Semi-rigid Rock Wool			0.704
3/8" OSB			0.093
2x6 Studs @ 16" o/c		-	-
R22 Batt Insulation	-	3.87	-
6 Mil Poly			0.0
½" Drywall			0.08
Interior Air Film			0.12
Sub-total:	1.19	3.87	1.137
Framing/Cavity percentage *(1):	23%	77%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(23 ÷ 1.19)} + \text{(77 ÷ 3.87)}}$ = 2.49 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective
$$(2.55) + (1.14) = 3.69$$
 RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

EXTERIOR WALL VINYL SIDING 2x6 1" FURRING @ 16" oc SPRAY FOAM = 3.84 RSI

TYPE OF ASSEMBLY: Above Grade Wall

REQUIRED EFFECTIVE RSI:

Assembly detail:

- Vinyl Siding
- Tyvek Sheathing Paper
- 3/8" OSB Sheathing
- 2x6 SPF #2 Studs @ 16" on centre
- 1.5"x1" SPF #2 Furring @ 16" on centre
- Spray foam medium density entire cavity
- ½" (12.7mm) Drywall

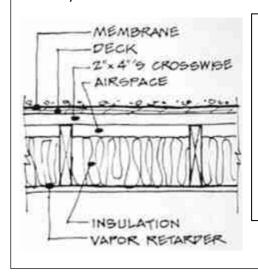
	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Exterior Air Film			0.03
Vinyl Siding			0.11
3/8" OSB			0.093
2x6 Studs @ 16" o/c	1.19	-	-
1.5"x1" Furring @ 16" o/c	0.21		
Sprayed polyurethane foam med den	-	5.94	-
½" Drywall			0.08
Interior Air Film			0.12
Sub total	1.4	F 04	0.422
Sub-total:	1.4	5.94	0.433
Framing/Cavity percentage *(1):	23%	77%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(23 ÷ 1.40)} + \text{(77 ÷ 5.94)}}$ = 3.41 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (3.41) + (0.43) = 3.84 RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI


FLAT ROOF 2x12 @ 16" oc R22 R14 = 5.45 RSI

TYPE OF ASSEMBLY: Flat Roof

REQUIRED EFFECTIVE RSI:

Assembly detail:

- Roofing Membrane
- 7/16" OSB Roof Sheathing
- 2x4 cross purlins at 16" o/c
- Vented Air space
- 2x12 SPF #2 Studs @ 16" on centre
- R22 Batt Insulation
- R14 Batt Insulation
- 6 Mil Poly (*Air & Vapour Barrier*)
- ½" Drywall Ceiling Board

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Exterior Air Film			0.03
2x12 Roof Joist @ 16" o/c	2.43	-	-
R22 Batt Insulation		3.87	
R14 Batt Insulation		2.46	
6 Mil Poly (*Air & Vapour Barrier*)			0.0
½" Drywall			0.08
Interior Air Film			0.11
Sub-total:	2.43	6.33	0.22
Framing/Cavity percentage *(1):	13%	87%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)}}$$
 = RSI parallel effective

RSI parallel =
$$\frac{100}{(13 \div 2.43) + (87 \div 6.33)}$$
 = 5.24 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (5.24) + (0.22) = **5.45** RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

FLAT ROOF 2x10 @ 16" oc SPRAY FOAM = 5.31 RSI

TYPE OF ASSEMBLY: Flat Roof

REQUIRED EFFECTIVE RSI:

Assembly detail:

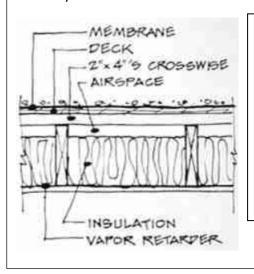
- Roofing Membrane
- 7/16" OSB Roof Sheathing
- 2x10 SPF #2 Studs @ 16" on centre
- Spray foam medium density full cavity
- ½" Drywall Ceiling Board

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Exterior Air Film			0.03
2x10 Roof Joist @ 16" o/c	2.0	-	-
Sprayed polyurethane foam med		6.62	
density			
6 Mil Poly (*Air & Vapour Barrier*)			0.0
½" Drywall			0.08
Interior Air Film			0.11
Sub-total:	2.0	6.62	0.22
Framing/Cavity percentage *(1):	13%	87%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(13 ÷ 2.0)} + \text{(87 ÷ 6.62)}}$ = 5.09 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (5.09) + (0.22) = **5.31 RSI** effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage


^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

FLAT ROOF 2x12 @ 16" oc R22 R14 = 5.45 RSI

TYPE OF ASSEMBLY: Flat Roof

REQUIRED EFFECTIVE RSI:

- Roofing Membrane
- 7/16" OSB Roof Sheathing
- 2x4 cross purlins at 16" o/c
- Vented Air space
- 2x12 SPF #2 Studs @ 16" on centre
- R22 Batt Insulation
- R14 Batt Insulation
- 6 Mil Poly (*Air & Vapour Barrier*)
- ½" Drywall Ceiling Board

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Exterior Air Film			0.03
2x12 Roof Joist @ 16" o/c	2.43	-	-
R22 Batt Insulation		3.87	
R14 Batt Insulation		2.46	
6 Mil Poly (*Air & Vapour Barrier*)			0.0
½" Drywall			0.08
Interior Air Film			0.11
Sub-total:	2.43	6.33	0.22
Framing/Cavity percentage *(1):	13%	87%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)}}$$
 = RSI parallel effective

RSI parallel =
$$\frac{100}{(13 \div 2.43) + (87 \div 6.33)}$$
 = 5.24 RSI parallel effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

FLAT ROOF 2x10 @ 16" oc SPRAY FOAM = 5.31 RSI

TYPE OF ASSEMBLY: Flat Roof

REQUIRED EFFECTIVE RSI:

- Roofing Membrane
- 7/16" OSB Roof Sheathing
- 2x10 SPF #2 Studs @ 16" on centre
- Spray foam medium density full cavity
- ½" Drywall Ceiling Board

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Exterior Air Film			0.03
2x10 Roof Joist @ 16" o/c	2.0	-	-
Sprayed polyurethane foam med		6.62	
density			
6 Mil Poly (*Air & Vapour Barrier*)			0.0
½" Drywall			0.08
Interior Air Film			0.11
Sub-total:	2.0	6.62	0.22
Framing/Cavity percentage *(1):	13%	87%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(13 ÷ 2.0)} + \text{(87 ÷ 6.62)}}$ = 5.09 RSI parallel effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

FOUNDATION WALL INTERIOR 1" XPS 2x6 @ 24" oc R20 BATT = 3.97 RSI

TYPE OF ASSEMBLY: Below Grade Wall

REQUIRED EFFECTIVE RSI:

√ 3.97

Assembly detail: (indicate type and location of air barrier and vapour barrier in detail drawing)

- Exterior Damp Proofing
- 8" Concrete Foundation Wall
- 1" Extruded styrofoam (XPS)
- 2x6 SPF #2 Studs @ 24" on centre
- R20 Batt Insulation
- 6 Mil Poly (*Air & Vapour Barrier*)
- ½" (12.7mm) Drywall

	Parallel Path	Calc:	Iso Planes Values:
Material (include thickness/spacing):	Thermal Resistance at Framing (RSI) *(2):	Thermal Resistance at Cavity (RSI) *(2):	Thermal Resistance *(2):
Soil			0.0
Exterior Damp Proofing			0.0
8" Concrete Foundation Wall			0.08
1" Extruded polystyrene Type 2, 3, 4			0.88
2x6 Studs @ 24" o/c	1.19	-	-
R20 Batt Insulation	-	3.52	(5_
6 Mil Poly			0.0
½" Drywall			0.08
Interior Air Film			0.12
Sub-total:	1.19	3.52	1.16
Framing/Cavity percentage *(1):	13%	87%	

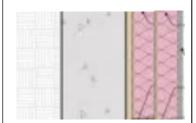
RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective

RSI parallel = $\frac{100}{\text{(13 ÷ 1.19)} + \text{(87 ÷ 3.52)}}$ = 3.18 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (2.81) + (1.16) = 3.97 RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI


FOUNDATION WALL 2-2x4 @ 24 oc R14 R12 BATT = 3.99 RSI

TYPE OF ASSEMBLY: Below Grade Wall

REQUIRED EFFECTIVE RSI:

√3.97

Assembly detail: (indicate type and location of air barrier and vapour barrier in detail drawing)

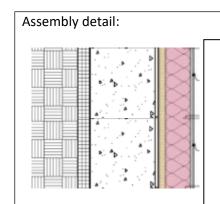
- Exterior Damp Proofing
- 8" Concrete Foundation Wall
- 1/2" Airspace
- 2-2x4 SPF #2 Studs @ 24" on centre
- R14 Batt Insulation
- R12 Batt Insulation
- 6 Mil Poly (*Air & Vapour Barrier*)
- ½" (12.7mm) Drywall

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Soil			0.0
Exterior Damp Proofing			0.0
8" Concrete Foundation Wall			0.08
½" Air Space			0.09
2-2x4 Studs @ 24" o/c	1.51	-	-
R 14 Batt Insulation	-	2.46	-
R 12 Batt Insulation		2.11	
6 Mil Poly			0.0
½" Drywall			0.08
Interior Air Film			0.12
Sub-total:	1.51	4.57	0.37
Framing/Cavity percentage *(1):	13%	87%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(13 ÷ 1.51)} + \text{(87 ÷ 4.57)}}$ = 3.62 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (3.62) + (0.37) = 3.99 RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage


^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

FOUNDATION WALL EXTERIOR 1" XPS 2x6 @ 24" oc R20 BATT = 4.06

TYPE OF ASSEMBLY: Below Grade Wall

REQUIRED EFFECTIVE RSI:

- 1" Extruded styrofoam (XPS)
- Exterior Damp Proofing
- 8" Concrete Foundation Wall
- ½" Air space
- 2x6 SPF #2 Studs @ 24" on centre
- R20 Batt Insulation
- 6 Mil Poly (*Air & Vapour Barrier*)
- ½" (12.7mm) Drywall

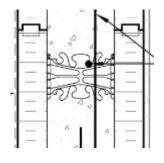
	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Soil			0.0
1" Extruded polystyrene Type 2, 3, 4			0.88
Exterior Damp Proofing			0.0
8" Concrete Foundation Wall			0.08
½" Air space			0.09
2x6 Studs @ 24" o/c	1.19	-	-
R20 Batt Insulation	-	3.52	-
6 Mil Poly			0.0
½" Drywall			0.08
Interior Air Film			0.12
Sub-total:	1.19	3.52	1.25
Framing/Cavity percentage *(1):	13%	87%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(13 ÷ 1.19)} + \text{(87 ÷ 3.52)}}$ = 2.81 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (2.81) + (1.25) = 4.06 RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI


FOUNDATION WALL INSULATED CONCRETE FORMS (ICF) = 4.03 RSI

TYPE OF ASSEMBLY: Below Grade Wall

REQUIRED EFFECTIVE RSI:

√3.97

Assembly detail: (indicate type and location of air barrier and vapour barrier in detail drawing)

- Exterior Damp Proofing
- R22 (Min R 21.41) Insulated Concrete Forms
- ½" (12.7mm) Drywall

	1		
	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Soil			0.0
Exterior Damp Proofing			0.0
R22 Insulated Concrete Forms			3.83
½" Drywall			0.08
Interior Air Film			0.12
Sub-total:	0	0	4.03
Framing/Cavity percentage *(1):	%	%	

RSI parallel =
$$\frac{100}{\text{(Frame \% \div RSI Frame)} + \text{(Cavity \% \div RSI Cavity)}} = \text{RSI parallel effective}$$

RSI parallel = $\frac{100}{\text{(0 \div 0)} + \text{(0 \div 0)}} = 0$ RSI parallel effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

FOUNDATION WALL 2x6 @ 24" oc SPRAY FOAM = 4.02 RSI

TYPE OF ASSEMBLY: Below Grade Wall

REQUIRED EFFECTIVE RSI:

Assembly detail: (indicate type and location of air barrier and vapour barrier in detail drawing)

- **Exterior Damp Proofing**
- 8" Concrete Foundation Wall
- ½" space to studs
- 2x6 SPF #2 Studs @ 24" on centre
- Spray foam medium density entire cavity
- ½" (12.7mm Drywall)

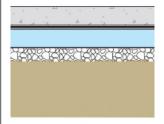
	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Soil			0.0
Exterior Damp Proofing			0.0
8" Concrete Foundation Wall			0.08
½" space to studs			0.0
2x6 Studs @ 24" o/c	1.19	-	-
Sprayed polyurethane foam medium	-	5.49	-
density			
½" Drywall			0.08
6 Mil Poly			0.0
Interior Air Film			0.12
Sub-total:	1.19	5.49	0.28
Framing/Cavity percentage *(1):	13%	87%	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(13 ÷ 1.19)} + \text{(87 ÷ 5.49)}}$ = 3.74 RSI parallel effective

100

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (3.74) + (0.28) = **4.02 RSI** effective THERFORE WORKS WITH OR WITHOUT AN HRV

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage


^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

HEATED SLAB OR UNHEATED SLAB ABOVE FROST 4" XPS (Min R 18.51) = 3.72 RSI

TYPE OF ASSEMBLY: Heated or Unheated Floor Above Frost

REQUIRED EFFECTIVE RSI: **√** 3.46

Assembly detail:

- 4" Concrete Slab
- 6 Mil Poly Air/Soil Gas Barrier sealed to foundation
- 4" (Min R 18.51) Extruded Styrofoam (XPS) Insulation below entire slab
- 2" Extruded Styrofoam Insulation (Vertically at edge of slab)
- 4" granular layer
- Compacted Fill or Undisturbed Soil

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Interior Air Film			0.16
4" Heated Concrete Slab			0.04
4" Extruded Polystyrene (XPS)			3.52
Types 2,3, and 4			
6 Mil Poly Air Barrier			0.0
4" granular layer			-
Compacted fill			-
Sub-total:	-	-	3.52
Framing/Cavity percentage *(1):	-	-	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}} = RSI parallel effective}$$

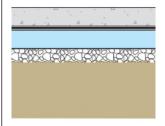
RSI parallel = $\frac{100}{\text{(÷) + (÷)}} = RSI parallel effective}$

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

$$(0.00) + (3.28) = 3.72$$
 RSI effective


^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage *(2) Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

UNHEATED SLAB BELOW FROST 3.5" XPS (Min R 15.75) = 3.28 RSI

TYPE OF ASSEMBLY: Unheated Floor Below Frost

REQUIRED	EFFECTIVE	RSI: ¥	2.98

Assembly detail:

- 4" Concrete Slab
- 6 Mil Poly Air/Soil Gas Barrier sealed to foundation
- 3.5" (Min R 15.75) Extruded Styrofoam (XPS) Insulation below entire slab
- 2" Extruded Styrofoam Insulation (Vertically at edge of slab)
- 4" granular layer
- Compacted Fill or Undisturbed Soil

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Interior Air Film			0.16
4" Unheated Concrete Slab			0.04
3.5" Extruded Polystyrene (XPS)			3.08
Types 2,3, and 4			
6 Mil Poly Air Barrier			0.0
4" granular layer			-
Compacted fill			-
Sub-total:	-	-	3.28
Framing/Cavity percentage *(1):	-	-	

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}} = RSI parallel effective}$$

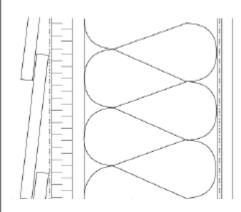
RSI parallel = $\frac{100}{\text{(÷) + (÷)}} = RSI parallel effective}$

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

$$(0.00) + (3.28) = 3.28$$
 RSI effective


^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage *(2) Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI

EXTERIOR WALL VINYL SIDING 1" Semi-rigid 2x6 @ 16" oc R22 BATT = 3.69 RSI

TYPE OF ASSEMBLY: Above Grade Wall

REQUIRED EFFECTIVE RSI:

- Vinyl Siding
- 1" Semi-Rigid Rock Wool
- Tyvek Sheathing Paper
- 3/8" OSB Sheathing
- 2x6 SPF #2 Studs @ 12" on centre
- R22 Batt Insulation
- 6 Mil Poly
- ½" (12.7mm) Drywall

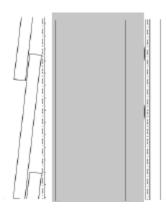
	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Exterior Air Film			0.03
Vinyl Siding			0.11
1" Semi-rigid Rock Wool			0.704
3/8" OSB			0.093
2x6 Studs @ 16" o/c		-	-
R22 Batt Insulation	-	3.87	-
6 Mil Poly			0.0
½" Drywall			0.08
Interior Air Film			0.12
Sub-total:	1.19	3.87	1.137
Framing/Cavity percentage *(1):	23%	77%	

RSI parallel =
$$\frac{100}{\text{(Frame \% \div RSI Frame)} + \text{(Cavity \% \div RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(23 ÷ 1.19)} + \text{(77 ÷ 3.87)}}$ = 2.49 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective
$$(2.55) + (1.14) = 3.69$$
 RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI


EXTERIOR WALL VINYL SIDING 2x6 1" FURRING @ 16" oc SPRAY FOAM = 3.84 RSI

TYPE OF ASSEMBLY: Above Grade Wall

REQUIRED EFFECTIVE RSI:

Assembly detail:

- Vinyl Siding
- Tyvek Sheathing Paper
- 3/8" OSB Sheathing
- 2x6 SPF #2 Studs @ 16" on centre
- 1.5"x1" SPF #2 Furring @ 16" on centre
- Spray foam medium density entire cavity
- ½" (12.7mm) Drywall

	Parallel Path Calc:		Iso Planes Values:
Material (include thickness/spacing):	Thermal	Thermal	Thermal Resistance *(2):
	Resistance	Resistance	
	at Framing	at Cavity	
	(RSI) *(2):	(RSI) *(2):	
Exterior Air Film			0.03
Vinyl Siding			0.11
3/8" OSB			0.093
2x6 Studs @ 16" o/c	1.19	-	-
1.5"x1" Furring @ 16" o/c	0.21		
Sprayed polyurethane foam med den	-	5.94	-
½" Drywall			0.08
Interior Air Film			0.12
Sub-total:	1.4	5.94	0.433
Framing/Cavity percentage *(1):	23%	77%	0.733

RSI parallel =
$$\frac{100}{\text{(Frame \% ÷ RSI Frame)} + \text{(Cavity \% ÷ RSI Cavity)}}$$
 = RSI parallel effective RSI parallel = $\frac{100}{\text{(23 ÷ 1.40)} + \text{(77 ÷ 5.94)}}$ = 3.41 RSI parallel effective

RSI parallel effective + Iso Planes total = TOTAL EFFECTIVE THERMAL ASSEMBLY RSI effective (3.41) + (0.43) = 3.84 RSI effective

^{*(1)} Refer to Table A-9.36.2.4.(1)A for framing/cavity percentage

^{*(2)} Refer to Table A-9.36.2.4.(1)D for thermal resistance of materials in RSI